TA253 Series

Low Cost, Low G, Dual Output Sensor, Temperature & Acceleration, Top Exit 3 Pin Connector, 500 mV/g, 10 mV/°C, ±15%

Product Features

High Performance in a Low Cost Sensor

Helps to Detect Bearing Defects and Temperature Changes

- Temperature (10 mV/°C) and Acceleration (500 mV/g) Outputs in One Sensor via a Standard 3
 Pin MIL Connection
- Popularly sold with SC300 Series Signal Conditioners with built-in Temperature Output

Specifications	Standard		Metric	Specifications	Standard		Metric
Part Number	TA253		M/ or	<u>Environmental</u>			
			M8/TA253	Operating Temperature Range	-40 to 250 °F		-40 to 121 °C
Sensitivity (±15%)		500 mV/g		Electromagnetic Sensitivity		CE	
Frequency Response (±3dB)	6-600,000 CPM		0,1-10000 Hz	Sealing		Welded, Hermetic	
Dynamic Range		± 10 g, peak		<u>Physical</u>			
		*Vsource ≥ 22V,		Sensing Element		PZT Ceramic	
		12Vbias		Sensing Structure		Shear Mode	
Temperature Measurement Range	-40 to 250 °F		-40 to 121 °C	Weight	3.7 oz		104 grams
Temperature Output		10 mV/°C		Case Material		316L Stainless	
lectrical				Case Material		Steel	
Settling Time		5 Seconds		Mounting Thread		1/4-28 Blind	
Voltage Source (IEPE)		18-30 VDC				Tapped Hole	
Constant Current Excitation		2-10 mA		Connector (Non-Integral)		3 Pin MIL-C-5015	
Spectral Noise @ 10 Hz		1.7 μg/√Hz		Resonant Frequency	960,000 CPM		16000 Hz
Spectral Noise @ 100 Hz		.2 μg/√Hz		Mounting Torque	2 to 5 ft. lbs.		2,7 to 6,8 Nm
Spectral Noise @ 1000 Hz		.12 μg/√Hz		Mounting Hardware Supplied	1/4-28 Stud	M6x1 or M8x1.2	
Output Impedance		<100 ohm					Adapter Stud
Bias Output Voltage		10-14 VDC		Calibration Certificate		CA10	
Case Isolation		>10 ⁸ ohm					

Typical Frequency Response

